
Journal of Econometrics and Statistics
Vol. 3, Issue 2, 2023, pp. 121-128
https://doi.org/10.47509/JES.2023.v03i02.01

Article History
Received : 08 July 2023; Revised : 18 August 2023; Accepted : 22 August 2023; Published : 30 December 2023

To cite this paper
Ahmed Ghezal (2023). On stationarity and the existence of moments in the periodic asymmetric power GARCH model. 
Journal of Econometrics and Statistics. 3(2), 121-128.

On stationarity and the existence of moments in
the periodic asymmetric power GARCH model

Ahmed Ghezal∗

Department of Mathematics and Computer Sciences, University
Center of Mila, Algeria

August 5, 2023

Abstract

In this article, we examine the strict and second order periodic station-
arities, the existence of higher order moments and the covariance structure
of the periodic asymmetric power GARCH (p, q) process under general
and tractable assumptions.
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1 INTRODUCTION
Autoregressive conditionally heteroskedastic (ARCH) models were introduced
by Engle[8] and their generalized ARCH (GARCH) extension is due to Bollerslev[3].
In this models, the key concept is the conditional variance, that is, the variance
conditional on the past. In the classical GARCH models, the conditional vari-
ance is expressed as a linear function of the squared past value of the series. The
symmetry property of standard GARCH models has the following interpreta-
tion in terms of autocorrelations. PGARCH model have proposed by Bollerslev
and Ghysels[4] was designed to take into account the periodic dependencies in
the conditional variance by allowing the parameters of the model to vary over the
cycle. The probabilistic structure and the asymptotic properties of PGARCH
models have been developed recently as in Bibi and Aknouche[1]; [2] and Lee
and Shin[12]. The Asymmetric Power GARCH (APGARCH) model allows a
wider class of power transformations than simply taking the absolute value or
squaring the data as in classical heteroskedastic models. APGARCH model in-
troduced by Ding et al[7], this model depends on endogenous estimation of the
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optimal power transformation and the structure availability significant improve-
ment over the classical GARCH structure. Ding et al[7] suggest an extension
of the GARCH family models analyses a wider class of power transformations
than simply taking the absolute value or squaring the data as in the traditional
heteroskedastic models and examined the volatility of S&P 500 index returns.
Consider a periodic APGARCH (p, q) process (εt)t∈Z with period s > 0, de-

fined on some probability space (Ω,�, P ) by the nonlinear periodic difference
equation



εst+v = hst+vest+v

hδ
st+v = α0(v) +

q∑
i=1

αi(v) (|εst+v−i| − βi(v)εst+v−i)
δ
+

p∑
j=1

γj (v)h
δ
st+v−j , t ∈ Z

(1.1)
where (et)t∈Z is a sequence of independent and identically distributed (i.i.d.)
random variables defined on a probability space (Ω,�, P ) with mean zero and
variance unity and assuming µδ = E

{
eδ0
}
< ∞. In (1.1) εst+v refers to εt during

the v− th " season", v ∈ {1, ..., s}, of the period t. The parameters α0(v), αi(v),
βi(v) and γj(v) with i ∈ {1, ..., q} and j ∈ {1, ..., p} are the model coefficients
at season v such that for all v ∈ {1, ..., s} , α0(v) > 0, αi(v) ≥ 0, |βi (v)| ≤ 1,
γj (v) ≥ 0 and δ > 0 with i ∈ {1, ..., q} , j ∈ {1, ..., p} , the variable ht is always
strictly positive. Furthermore, we assume that εl is independent of et for l < t.
The process (εt)t∈Z is globally non stationary, but is stationary within each
period, are becoming an appealing tool for investigating both volatility and
distinct “seasonal” patterns and have been applied in various disciplines such as
finance and monetary economics.

Remark 1.1. 1. If δ = 2 and βi(v) = 0 for all i, we get the PGARCH (p, q)
model (e.g.,Bollerslev and Ghysels[4] and Bibi and Aknouche[1]; [2]).

2. If δ = 1, we get the PTGARCH (p, q) (e.g., Glosten et al[11] for single
regime).

3. If δ = 1, |βi (v)| = 1 for all i, we get the PGARCH (p, q) or PARCH (p)(e.g.,
Bollerslev and Ghysels[4] and Bibi and Aknouche[1]; [2] and Lescheb[13]).

4. If δ −→ 0, βi(v) = 0 for all i and using log hst+v = lim
δ−→0

hδ
st+v−1

δ one can

interpret the P logGARCH (p, q) model is obtained as the limiting case of the
P −APGARCH (p, q) .

In this article, we focus on studying the fundamental probabilistic properties
of the P−APGARCH process. In Section 2, we derive some sufficient conditions
for strict stationarity. In Section 3, the existence of higher-order moments are
given and covariance structure. We conclude in Section 4.

Some notations are used throughout the article: I(n) is the n × n identity
matrix. O(n,,m) denotes the matrix of order n×m whose entries are zeros, for
simplicity we set O(n) := O(n,n) and O(n) := O(n,1). The spectral radius of
squared matrix M is noted ρ (M), ‖.‖ refers to the standard norm in Rn or
the uniform induced norm in the space M(n) of n× n matrices, ⊗ denotes the
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Kronecker product of matrices. V ec (M) is the usual column stacking vector
of the matrix M . For any p ≥ 1, Lp = Lp(Ω,�, P ) denotes the Hilbert space
of random variables X defined on the probability space (Ω,�, P ) such that
‖Xp‖ = (E{|X|p})

1
p < +∞.

2 STRICT STATIONARITY
Let n = max (p, q) , the P − APGARCH (p, q) process given by (1.1) can be
rewritten as

Xst+v = B (v)Xst+v−1 + ξ (v) εδst+v−1 + α0(v)H (2.1)

where

B (v) :=

(
γ
1:n−1

(v) I(n−1)

γn(v) O′
(n−1)

)

n×n

, ξ (v) :=

(
ξ
1:n−1

(v)

ξn (v)

)

n×1

,

ψ
1:n

(v) :=




ψ1 (v)
...
ψn (v)




n×1

, H :=

(
1
O(n−1)

)

n×1

and ξj (v) = (±1− βj (v))
δ
αj (v) for all 1 ≤ j ≤ n, and in B (v) or ξ (v) ,

αi (v) = 0 for q + 1 ≤ i ≤ n or γj (v) = 0 for p+ 1 ≤ j ≤ n. The kth component
of state vector Xst+v denoted by Xk,t (v) , is given by

Xk,t (v) =




hδ
st+v if k = 1
q∑

i=k

αi(v − i+ k) (|εst+v−i+k−1| − βi(v − i+ k)εst+v−i+k−1)
δ

+
p∑

j=k

γj (v − j + k)hδ
st+v−j+k−1 if 2 ≤ k ≤ n

Because εδst+v−1 = hδ
st+v−1e

δ
st+v−1 = H ′Xst+v−1e

δ
st+v−1, the state transi-

tion Eq (2.1) can be expressed as

Xst+v = A (est+v−1)Xst+v−1 + α0(v)H (2.2)

where A (est+v−1) = B (v)+ξ (v)H ′eδst+v−1, Eq (2.2) is the same as the defining
equation for multivariate generalized periodic AR process introduced recently
by Franses and Paap[9]. However, since Gladychev[10], with periodic time-
varying coefficients, it is possible to embed seasons into a multivariate stationary
process. More precisely the periodically stationary

(
Xst+v

)
is equivalent to a

stationary process (Y t)t where Y t :=
(
X ′

st+1, ..., X
′
st+s

)′ ∈ Rsn is a generalized
AR process, i.e.,

Y t = ΛtY t−1 + et (2.3)
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where

Λt :=




O(n) · · · O(n) A (est)
O(n) · · · O(n) A (est+1)A (est)
...

. . .
...

...

O(n) · · · O(n)

{
s−1∏
v=0

A (est+s−v−1)

}




sn×sn

,

et :=




α0(1)H
α0(1)A (est+1)H + α0(2)H
...
s∑

k=1

{
s−k−1∏
v=0

A (est+s−v−1)

}
α0(k)H




sn×1

where, as usual, empty products are set equal to I(n) . Since (et)t∈Z is an
i.i.d. process, stationary and ergodic, (Λt, et)t∈Z is also a stationary and er-
godic process and since E

{
log+ ‖Λ1‖

}
< ∞ and E

{
log+ ‖e1‖

}
< ∞, where

log+ (x) = max (log x, 0) for any x > 0. The results of this subsection are based
on theorems proved by Bougerol and Picard[6].

Theorem 2.1. Eq (2.3) has a unique strictly stationary and ergodic solution
if and only if the top Lyapunov exponent γL (Λ) associated with the sequence of
matrices (Λt)t ,

γL (Λ) := inf
t>0




1

t
E


log

∥∥∥∥∥∥
t−1∏
j=0

Λt−j

∥∥∥∥∥∥







a.s.
= lim

t−→∞




1

t
log

∥∥∥∥∥∥
t−1∏
j=0

Λt−j

∥∥∥∥∥∥


 (2.4)

is strictly negative. The unique stationary solution is ergodic, causal and given
by

Y t =
∑
k≥0




k−1∏
j=0

Λt−j


 et−k (2.5)

where the series (2.5) converges almost surely (a.s.).

Proof. The proof of Theorem 2.1 is similar the proof of Theorem 1.3 by Bougerol

and Picard[5].

Proposition 2.1. If
γL (A) < 0

where γL (−) is the top Lyapunov exponent of the sequence of matrices({
s−1∏
v=0

A (est+s−v−1)

})

t

, then Eq (2.3) has a unique, strictly stationary and

ergodic solution given by the series (2.5).
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Proof. A simple computation shows that

t∏
j=0

Λt−j = Λt




O(n) · · · O(n) O(n)

O(n) · · · O(n) O(n)

...
. . .

...
...

O(n) · · · O(n)

t−1∏
j=1

{
s−1∏
v=0

A
(
es(t−j)+s−v−1

)}




Therefore, since the top Lyapunov exponent is independent of the norm,
by choosing a multiplicative norm it is straighforward to show that γL (Λ) ≤
γL (A) .

Corollary 2.1. For P−APGARCH (1, 1) , a sufficient condition which ensures

γL (A) < 0 is that
{

s−1∏
v=0

∣∣γ1 (v) + ξ1 (v) e
δ
0

∣∣
}

< 1.

Proof. If p = q = 1, we have for all t ∈ Z, A (est+v−1) = γ1 (v) + ξ1 (v) e
δ
st+v−1

and γL (A) = E

{
log

{
s−1∏
v=0

∣∣γ1 (v) + ξ1 (v) e
δ
0

∣∣
}}

.

The top Lyapunov exponent γL (.) criterion seems difficult to obtain explic-
itly, however a potential method to verify whether or not γL (.) < 0 is via a
Monte-Carlo simulation using Eq (2.3). This fact heavily limits the interest to
the criterion in statistical applications. Indeed, the solution need to have some
moments to make an estimation theory possible and Condition (2.4) does not
guarantee the existence of such moments. Therefore, we have to search for con-
ditions ensuring the existence of moments for the stationary solution, for which
the top Lyapunov exponent γL (.) will be automatically negative.

3 EXISTANCE OF THE HIGHER-ORDER MO-
MENTS AND COVARIANCE STRUCTURE

In this section, we present a necessary and sufficient conditions for the existence
of finite higher-order moments for P − APGARCH process, and to get the
covariance structure of the P −APGARCH process.

Theorem 3.1. Let (Y t)t be the stationary solution of model (2.3). Assume that
µδm < ∞ for any m > 1.

1. If

ρ

(
s−1∏
v=0

A⊗m
s−v−1 (µδ)

)
< 1 (3.1)

then Y t ∈ Lm.

2. Conversely, if ρ
(

s−1∏
v=0

A⊗m
s−v−1 (µδ)

)
≥ 1, then there is no strictly station-

ary solution (Y t)t to model (2.3) such that Y t ∈ Lm.
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Proof. 1. We first define the following Rsn−valued stochastic processes

Pn (t) :=

{
O(sn) if n < 0

et + ΛtPn−1 (t− 1) if n ≥ 0

and for all n ∈ Z, Q
n
(t) = Pn (t) − Pn−1 (t) . It can be easily shown that, for

all n ≥ 0, Pn (t) and Q
n
(t) are measurable functions of et, ..., et−n. Hence the

processes (Pn (t))t and (Qn (t))t are stationary. From the definition of Pn (t)
and Q

n
(t), we can verify that

Q
n
(t) :=




O(sn) if n < 0

et if n = 0
ΛtQn−1

(t− 1) if n > 0

for all n ∈ Z. Using the properties of Kronecker product, we obtain Q⊗m

n
(t) =

Λ⊗m
t Q⊗m

n−1
(t− 1) for m > 1, n > 0 and

E
{
Q⊗m

n
(t)

}
=

(
E
{
Λ⊗m
t

})n
E
{
Q⊗m

0
(t− n)

}
=

(
E
{
Λ⊗m
t

})n
E
{
e⊗m
t−n

}

Since ρ
(
E
{
Λ⊗m
t

})
= ρ

(
s−1∏
v=0

A⊗m
s−v−1 (µδ)

)
< 1, we conclude that Pn (t) con-

verges in Lm and almost surely to some limit Y t ∈ Lm, which is the solution of
equation (2.3).

2. From (2.5), we obtain

E
{
Y ⊗m

t

}
≥

∑
k≥0

E
{
Y ⊗m

t,k

}
=

∑
k≥0

(
E
{
Λ⊗m
t

})k
E
{
e⊗m
t−k

}

and the conclusion follows.

We assume that condition (3.1) holds, this implies that (2.2) has a unique PC
solution (in L2 sense). Taking expectation on both sides of (2.2) and using the
notation µ

m
(v) = E

{
X⊗m

st+v

}
and Σv (h) = E

{
Xst+v ⊗Xst+v−h

}
, m = 1, 2,

gives
µ
1
(v) = Av (µδ)µ1

(v − 1) + α0 (v)H, v ∈ {1, ..., s} (3.2)

Recursion (3.2) s−times, we get




µ
1
(s) =

(
I(q) −

{
s−1∏
v=0

As−v (µδ)

})−1 s−1∑
j=0

{
j−1∏
v=0

As−v (µδ)

}
α0 (v)H

µ
1
(v) =

{
v−1∏
j=0

As−j (µδ)

}
µ
1
(s) +

v−1∑
j=0

{
j−1∏
k=0

As−k (µδ)

}
α0 (v − j)H, v ∈ {1, ..., s}

The seasonal variance can be obtained as follows

µ
2
(v) = A⊗2

v (µδ)µ2
(v − 1) + ζ

v
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where ζ
v
:= α2

0 (v)H
⊗2 + α0 (v) (Av (µδ)⊗H +H ⊗Av (µδ))µ1

(v − 1) , thus




µ
2
(s) =

(
I(n2) −

{
s−1∏
v=0

A⊗2
s−v (µδ)

})−1 s−1∑
j=0

{
j−1∏
v=0

A⊗2
s−v (µδ)

}
ζ
s−j

µ
2
(v) =

{
v−1∏
j=0

A⊗2
s−j (µδ)

}
µ
2
(s) +

v−1∑
j=0

{
j−1∏
i=0

A⊗2
v−i (µδ)

}
ζ
v−j

Now, note that for any h > 0, we have

Σv (h) = E
{
Xst+v ⊗Xst+v−h

}

=
(
Av (µδ)⊗ I(n)

)
E
{
Xst+v−1 ⊗Xst+v−h

}
+ α0 (v)

(
H ⊗ µ

1
(v − h)

)

=
(
Av (µδ)⊗ I(n)

)
Σv−1 (h− 1) + α0 (v)

(
H ⊗ µ

1
(v − h)

)

=




h−1∏
j=0

(
Av−j (µδ)⊗ I(n)

)

µ

2
(v − h)

+
h−1∑
j=0

α0 (v − k)

{
j−1∏
i=0

(
Av−i (µδ)⊗ I(n)

)}(
H ⊗ µ

1
(v − j − h)

)

4 CONCLUSION
This article partially extends L2 structure of periodic APGARCH model, which
allows the volatility of time series to have different dynamics according to the
model parameters switching between s regimes. In addition to the conditions
ensuring the existence and uniqueness of strictly stationary and second order
stationary solution of P −APGARCH. We have also given sufficient conditions
for the processes to belong Lm, m ≥ 1, the whole based on a generalized AR
representation.
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